

User Manual

RESEARCH INSTRUMENTS LTD Bickland Industrial Park, Falmouth, Cornwall TR11 4TA, UK t: +44 (0) 1326 372 753 | f: +44 (0) 1326 378 783 |e: sales@research-instruments.com www.research-instruments.com

Document 6-47-500UM, Issue 11, 03rd May 2016, DRF 3437

CONTENTS

SECTION 1 - PREFACE	4
SECTION 2 - INTRODUCTION TO THE SATURN 5 LASER SYSTEM	5
Intended Use Indication for Use - USA Customers Only Applicable Part Numbers Microscope Compatibility Installation	5 5 5 6
SECTION 3 - SAFETY WARNINGS	7
Precautions Guidance and Manufacturer's Declaration – Electromagnetic Emissions (IEC 60601-1-2) Guidance and Manufacturer's Declaration — Electromagnetic Immunity	9 9 10
SECTION 4 - PRODUCT OVERVIEW	13
System Components Saturn 5 Laser System Component Part Numbers Saturn 5 Active Laser System Mirror Module Part Numbers Saturn 5 Laser System Collimator Module Part Numbers Hardware Overview Laser Specifications Objective Specifications Electrical Specifications Mains Adaptor for Control Unit and Motor Module Dimensions Operating Range	13 14 14 15 15 16 16 16 16 16 16
SECTION 5 - RI VIEWER	17
User Interface Icons How to Zoom & Pan the Image How to Set the Preset Zoom How to Select Cameras How to View Live Images Camera Flipping Changing Camera Settings Objectives How to Select Objectives How to Select Objectives How to Add Objectives	17 18 18 18 18 18 19 19 19 19 19 19 20 20
How to Remove Objectives How to Check Objective Calibration	20 20
How to Perform Measurements How to Record Video RI Viewer Gallery Advice for Use	21 21 22 27

SECTION 6 - SATURN 5 LASER SYSTEM INTENDED USES	28
Laser Assisted Hatching Embryo Biopsy procedure Cleavage Stage Blastomere Biopsy Trophectoderm /Blastocyst Biopsy Blastocyst Collapse	28 28 28 29 29
SECTION 7 - LASER ABLATION PROCEDURE	30
Hole Size Selection Ablation Procedure	31 31
SECTION 8 - LASER OPERATION	33
How to Startup How to Configure the Laser for a New Procedure How to Check Laser Target Alignment for Saturn 5 Active Laser System How to Check Laser Target Alignment for Saturn 5 Fixed Laser System How to Check Hole Size Calibration How to Remove a Point from the Hole Size Calibration Graph Laser Target Hole Size Indicator Exclusion Zone How to Adjust Hole Size/Pulse Width Preset Pulse Lengths How to Fire the Laser (Single Pulse) Biopsy Mode USA Clearance Regulations How to Enable Biopsy Mode How to Fire the Laser (Biopsy Mode) How to Shut Down	33 33 33 34 34 34 35 35 35 35 35 35 35 35 36 36 36 36 36 36 37 37
SECTION 9 - TROUBLESHOOTING FOR SATURN 5 LASER SYSTEM	38
SECTION 10 - CARE AND MAINTENANCE Cleaning Servicing	39 39 39
Disposal of Goods	39
SECTION 11 - REPAIRS AND RETURNS PROCEDURES	40
RI Repairs System RI Returns System Contact Details Obligation to Inform	40 40 40 40
Feedback	40

___| |

____|

1

SECTION 1 - PREFACE

Thank you for choosing the Saturn 5 Laser System.

This manual provides all necessary information to use the Research Instruments Ltd Saturn 5 Laser System. The system should be operated by trained personnel only. All sections of this manual should be read and understood fully before any operation of the system. Please see the Intended Use for more information.

If the operator is unsure of any of the information contained in this manual, they should contact Research Instruments or an appointed representative before attempting to use this equipment.

In no event does Research Instruments Ltd (RI) assume the liability for any technical or editorial errors of commission, or omission; nor is Research Instruments Ltd liable for direct, indirect, incidental, or consequential damages arising out of the use or inability to use this manual.

© This manual is protected by copyright, all rights reserved, and no part hereof may be photocopied or reproduced in any form without the prior written consent of Research Instruments Ltd.

Saturn[™] and RI Viewer[™] are trademarks of Research instruments Ltd. All other brand names are trademarks of their respective owners.

The information in this manual is current at the time of publication. RI is constantly updating its products, and therefore reserves the right to introduce changes in design, equipment and technical features at any time. The latest version of the User Manual as well as RI Viewer software can be downloaded from software.research-instruments.com.

The Saturn 5 Laser System manual belongs with the laser and should be passed on with the Saturn 5 Laser System if relocated to another clinic.

This indicates cautionary text which should be followed to avoid injury to users or damage to samples.

 \uparrow The system should be operated by qualified and trained personnel only.

SECTION 2 - INTRODUCTION TO THE SATURN 5 LASER SYSTEM

Intended Use

The Saturn Laser System is intended 'to ablate a User defined section of a gamete or embryo within ART'.

CE 0120

Indication for Use - USA Customers Only

For use in assisted reproduction procedures to ablate or thin the zona pellucida of an embryo to facilitate assisted hatching or recovery of cells for pre-implantation genetic diagnosis (blastomeres). The device can also be used on blastocyst stage embryos for biopsy of trophectoderm cells for pre-implantation diagnosis procedures, and blastocyst collapse prior to vitrification procedures.

$R_{\!X\,\text{Only}}$

Caution: Federal law restricts this device to sale by or on the order of a physician or a practitioner trained and certified in its use

Applicable indications for use are subject to the regulations of the country into which the device is sold.

Applicable Part Numbers

6-47-500 - Saturn 5 Active Laser System 6-47-501 - Saturn 5 Fixed Laser System

Microscope Compatibility

Zeiss Axiovert 40/100/200/Observer Nikon TMD, D200/300, TE200/300, TE2000, Ti Leica DMIRB, DMI3000B/4000B/6000B, DMIL, DMi8 Olympus IMT2, IX50/70, IX51/71/81, IX53/73/83

Installation

The PC is an intrinsic part of the Saturn 5 Laser System. It may be connected to a Local Area Network (LAN) only. Only install RI Viewer software. We recommend PC security features such as anti-virus software/firewall be installed consistent with the facility's IT policy and that each user of the system has a password protected user profile assigned to the PC in order to prevent unauthorised access.

Installation of the Saturn 5 Laser System should be carried out by a Research Instruments technician or other RI-authorised personnel. Incorrect installation could result in reduced power output, laser misalignment or laser malfunction. Relocation of this system should be treated as a re-installation and should, therefore, be carried out by authorised personnel.

Please note that installation and servicing is covered separately in the Saturn 5 Laser System Installation Manual (6-47-500IM). Users within the USA will not be provided with the Saturn 5 Laser System Installation Manual.

A Patients Guide to Laser Assisted Hatching (LAH), Laser Assisted Biopsy (LAB) and Blastocyst Collapse are provided on the RI Viewer installation CD. These can be opened using Adobe Reader or other PDF viewers. We recommend that copies are printed and made available to patients.

SECTION 3 - SAFETY WARNINGS

Laser radiation is present within the control unit, the fibre optic patch lead and through the microscope to output at the objective. The Saturn 5 Laser System has been designed to ensure that emission of laser radiation at any point is within the limits stipulated by international safety standards, IEC 60825-1:2014, and US 21CFR1040.10 for unprotected viewing (Class 1). As an extra precaution, an infrared blocking filter has been incorporated into the optical path leading to the eyepieces to reduce laser emission by a further 99%.

For a description of controls and for the location of laser aperture on control unit, see Section 4 - Hardware Overview.

CAUTION Hazardous radiation exposure may occur through the use of controls, executing adjustments or the performance of procedures other than those specified herein. Servicing and adjustment other than that specified in this manual should only be carried out by RI or RI authorised agents.

DO NOT disassemble or modify any part of the Saturn 5 Laser System, or substitute any component for any other. Doing so may result in exposure to dangerous levels of laser radiation. This voids the warranty and/or service contract.

DO NOT use a magnifying glass or eye loupe above the objective lens.

DO NOT operate the laser unless it is properly mounted to a microscope.

ONLY use the power cable and power supply adaptor supplied with the system.

The cable to the power supply is the Disconnect Device for this equipment. To remove all electrical power from this product, disconnect the power cable from the electrical outlet. Equipment should be positioned so as to allow easy access to the power cable. The appliance coupler or mains plug is used as the disconnect and must remain readily operable.

WARNING To avoid the risk of electric shock, this equipment must only be connected to a supply mains with protective earth.

WARNING Not to be used in a patient environment

alignment See Section

WARNING Before performing any procedure, the pilot laser must be used to check the alignment of the Active positioning system. The system must be re-aligned when necessary. See Section 8 How to Check Laser Target Alignment.

WARNING Thermal lensing is a defocusing of the laser beam caused by changes to the refractive index of the medium as it is heated. The degree of defocus depends on the total beam energy deposited in the medium. While slight defocus has no effect on the drilling properties, this effect may become a problem for higher beam energies. To eliminate any significant effects from thermal lensing, we recommend that the pulse length be kept below 1000µs for clinical Laser Assisted Hatching (LAH) zona drilling.

WARNING Only a single opening should be made in the zona pellucida. Multiple openings or those that are too small may prevent embryo hatching or lead to abnormal development.

WARNING Do not operate the pilot laser with an embryo in the field of view. Exposure to the pilot laser may damage the embryo.

WARNING The microscope itself must be maintained to a high standard. Problems such as worn focus mechanisms or an insecure video camera may lead to unreliable focus and image stability, and could lead to embryo damage.

WARNING Do not operate the laser without the RI Viewer software running, as targeting and hole size indication will not be active, and the embryo may be damaged.

WARNING The embryo may be damaged if objectives other than the red Saturn 5 Laser System objective is used.

WARNING Do not modify this equipment without authorisation of the manufacturer.

WARNING Where an ITO glass heated stage is fitted, do not fire the laser with the microscope focussed into the ITO glass surface as this may damage the ITO coating.

Precautions

- To minimise the risk of damage to blastomeres, administer as few laser pulses as possible at the lowest energy levels possible to achieve the prescribed zona drilling or thinning effect.
- Direct the laser beam toward a section of the zona pellucida where the adjacent perivitelline space is widest or next to an area of fragmentation.
- A holding pipette should be used during laser treatment to minimise the risk of embryo movement.
- Small openings in the zona pellucida may lead to embryo constriction and abnormal development.
- To date there are no known reports showing a greater occurrence rate of major or minor defects in children derived from laser-hatched embryos. Long-term follow-up data on children born from laser-hatched embryos does not yet exist. A study of 134 such babies* found no increase in the major congenital malformations, chromosomal aberrations or minor congenital malformations between the LAH treated group and all deliveries at their hospital.
- The device is not affected by and does not present any reciprocal interference to the microscope.
- During normal use there is no contact with patient/sample.

*Kanyo, K., Konc, J. "A follow-up study of children born after diode laser assisted hatching." European Journal of Obstetrics and Gynaecology. 110: 176-180 (2003).

Guidance and Manufacturer's Declaration – Electromagnetic Emissions (IEC 60601-1-2)

The Saturn 5 Laser System is intended for use in the electromagnetic environment specified below. The customer or the user of the Saturn 5 Laser System should assure that it is used in such an environment.

Emissions test	Compliance	Electromagnetic environment - guidance
RF emissions CISPR 11	Group 1	The Saturn 5 Laser System uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.
RF emissions CISPR 11	Class B	The Saturn 5 Laser System is suitable for use in all establishments, including domestic establishments and those directly connected to
Harmonic emissions IEC 61000-3-2	Class A	supply network that supplies buildings used for domestic
Voltage fluctuations/flicker emissions	Complies	purposes.

USA Only

Compliance with the emissions requirements of CISPR 22 Class A requires the following warning: "This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures."

Guidance and Manufacturer's Declaration — Electromagnetic Immunity

The Saturn 5 Laser System is intended for use in the electromagnetic environment specified below. The customer or the user of the Saturn 5 Laser System should ensure that it is used in such an environment.

IMMUNITY test	IEC 60601 Test level	Compliance level	Electro magnetic environment - guidance
Electrostatic discharge (ESD) IEC 61000-4-2	± 6 kV contact ± 8 kV air	± 6 kV contact ± 8 kV air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30 %.
Electrical fast transient/burst IEC 61000-4-4	± 2 kV for power supply lines ± 1 kV for input/ output lines	± 2 kV for power supply lines ± 1 kV for input/ output Lines	Mains power quality should be that of a typical commercial or hospital environment.
Surge IEC 61000-4-5	± 1 kV line(s) to line(s) ± 2 kV line(s) to earth	± 1 kV differential Mode ± 2 kV common mode	Mains power quality should be that of a typical commercial or hospital environment.
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11	<5% U ^T (>95% dip in U ^T) for 0.5 cycle 40% U ^T (60% dip in U ^T) for 5 cycles 70% U ^T (30% dip in U ^T) for 25 cycles <5 % U ^T (>95 % dip in U ^T) for 5s	<5 % U_{T} (>95 % dip in U_{T}) for 0.5 cycle 40 % U_{T} (60 % dip in U_{T}) for 5 cycles 70 % U_{T} (30 % dip in U_{T}) for 25 cycles <5 % U_{T} (>95 % dip in U_{T}) for 5s	Mains power quality should be that of a typical commercial or hospital environment. If the user of the Saturn 5 Laser System requires continued operation during power mains interruptions, it is recommended that the Saturn 5 Laser System be powered from an uninterruptible power supply or a battery.
Power frequency (50/60 Hz) magnetic field IEC 61000-4-8	3 A/m	0.3 A/m	The power frequency magnetic field should be measured in the intended installation location to assure that it is sufficiently low.

Note: U_{T} is the a.c. mains voltage prior to application of the test level.

Guidance and Manufacturer's Declaration — Electromagnetic Immunity Continued

IMMUNITY	IEC 60601	Compliance	Electro magnetic environment - guidance
test	Test level	level	
Conducted RF	3 Vrms	3 Vrms	Portable and mobile RF communications
			equipment should be used no closer to any part
IEC 61000-4-6	150 kHz to 80 MHz		of the Saturn 5 Laser System including cables,
			than the recommended separation distance
Radiated RF	3 V/m	3 V/m	calculated from the equation applicable to the
			frequency of the transmitter.
IEC 61000-4-3	80 MHz to 2.5 GHz		
			Recommended separation distance
			d = 1,2√P
			d = 1,2√P 80 MHz to 800 MHz
			d = 2,3√P 800 MHz to 2 , 5 GHz where P
			is the maximum output power rating of
			the transmitter in watts (W) according to
			the transmitter manufacturer and d is the
			recommended separation distance in metres
			(m).
			Field strengths from fixed RF transmitters, as
			determined by an electromagnetic site survey,
			^a should be less than the compliance level in
			each frequency range. ^b
			Interference may occur in the vicinity of
			equipment marked with the following symbol:
			$\left(\left((\bullet)\right)\right)$

Note 1: At 80 MHz and 800 MHz, the higher frequency range applies.

Note 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

^a Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephone and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the Saturn 5 Laser System is used exceeds the applicable RF compliance level above, the Saturn 5 Laser System should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the Saturn 5 Laser System. ^b Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 3 V/m.

Safety/Information Symbols

Symbol	Meaning
	Indicates instruction for disposal of goods.
C E 0120	In accordance with Annex II of the European Medical Device Directive 93/42/EEC, as amended by Directive 2007/47/EC under the supervision of notified body No.0120, SGS, UK Ltd.
	Indicates the medical device manufacturer.
	Indicates the need for the user to consult the instructions for use for important cautionary information such as warnings and precautions that cannot, for a variety of reasons, be presented on the medical device itself.
	Follow instructions for use.
SN	The first four digits are the serial number, a unique identifier assigned to the product. The last four digits signify the month and year of manufacture, eg 5001/0214 (this denotes a unique serial number of 5001 and confirms manufacture in February 2014).
$\mathbf{R}_{_{Only}}$	Caution: US Federal law restricts this device for sale to or on the order of a licensed healthcare practitioner.
CLASS 1 LASER PRODUCT	Class 1 laser product

SECTION 4 - PRODUCT OVERVIEW

Welcome to the User Manual for the Research Instruments Saturn 5 Laser System. This manual covers the set-up, operation and maintenance of the system.

For use in assisted reproduction procedures to ablate or thin the zona pellucida of an embryo to facilitate assisted hatching or recovery of cells for pre-implantation genetic diagnosis (blastomeres). The device can also be used on blastocyst stage embryos for the biopsy of trophectoderm cells for pre-implantation diagnosis procedures, and blastocyst collapse prior to vitrification procedures.

The system is used with an inverted microscope, PC and camera to provide an optical system and means of firing a laser. The system cannot be used without a PC or RI viewer software.

The Saturn 5 Laser System is offered in two options, fixed or active models. The active model allows the user to move the position of the laser to the target area on the sample. The fixed model has the laser in a fixed position and the user moves the sample to the target area.

All laser movement (Active model only) and laser firing is user controlled.

System Components

Note Actual components may differ from those shown.

The Saturn 5 Laser System comes supplied with the following parts, a control unit containing the lasers, mirror module, armoured patch lead and a special objective. If you have a Saturn 5 Active Laser System then an additional motor module will be supplied. The laser beams are delivered to the specimen through a fibre optic patch lead, collimator module (that is part of the mirror module for a fixed system or the motor module for an active system) and the special objective.

A foot pedal for firing the laser is available as an optional extra. This is attached to the PC by a mini USB cable.

The motor module receives coordinates via the USB which moves the motors to those coordinates. The control unit then receives commands from the software to fire for a specific length of time.

The following tables give part numbers of system components and microscope adaptors. All parts are supplied or manufactured by Research Instruments Ltd.

Saturn 5 Laser System Component Part Numbers

Part Number	Description	
5-47-010	Control Unit with 1.5m Patch Lead	
5-47-100	Motor Module (Saturn 5 Active Laser System)	
1-10-100	12V 2.5A Medical PSU (x2 for Saturn 5 Active Laser System)	
5-45-500	Laser Objective (red) 40x	
5-45-507	Laser Objective (red) 20x*	

Saturn 5 Active Laser System Mirror Module Part Numbers

Part Number	Description
5-46-163	Mirror module for Olympus IX53/73/83 left
5-46-150	Mirror module for Olympus IX50/70 left
5-46-160	Mirror module for Olympus IX50/70 right
5-46-151	Mirror module for Olympus IX51/71/81 left
5-46-152	Mirror module for Olympus IX51/71/81 right
5-46-159	Mirror module for IMT2
5-46-135	Mirror module for TMD
5-46-132	Mirror module for Nikon Diaphot 200/300
5-46-130	Mirror module for TE 200/300
5-46-140	Mirror module for TE2000 with Integra Ti
5-46-141	Mirror module for TE2000 without Integra Ti
5-46-142	Mirror module for Nikon Ti with Integra Ti
5-46-144	Mirror module for Nikon Ti with X-Y
5-46-158	Mirror module for Axiovert 40
5-46-110	Mirror module for Axiovert 200/Observer
5-46-120	Mirror module for DMIRB
5-46-122	Mirror module for DMI3000B
5-46-121	Mirror module for DMI4000B/6000B
5-46-124	Mirror module for DMi8

*Not cleared for use in USA market.

Saturn 5 Laser System Collimator Module Part Numbers

5-45-163	Collimator module for Olympus IX53/73/83
5-45-383	Collimator module for Olympus IX50/70
5-45-387	Collimator module for Olympus IX51/71/81
5-45-388	Collimator module for Olympus IX71/71/81 fluor
5-45-580	Collimator module for IMT2
5-45-411	Collimator module for TMD
5-45-301	Collimator module for Nikon Diaphot 300/TE300
5-45-545	Collimator module for TE2000/Nikon Ti
5-45-546	Collimator module for TE2000/Nikon Ti fluor
5-45-575	Collimator module for Axiovert 40
5-45-009	Collimator module for Axiovert 100
5-45-011	Collimator module for Axiovert 200/Observer
5-45-450	Collimator module for DMIRB
5-45-470	Collimator module for DMIL
5-45-461	Collimator module for DMI3000B
5-45-460	Collimator module for DMI4000B/6000B
5-45-463	Collimator module for DMi8

Hardware Overview

Rear Panel

Pilot laser brightness: The brightness of the pilot laser can be adjusted by turning the control knob on the rear panel to obtain the clearest image in the target alignment procedure.

The light on the front of the control unit indicates that the control unit is operational. If the unit is plugged in and the light is not on, contact Research Instruments for assistance.

4|

Laser Specifications

Laser Specifications	Ablation Laser	Pilot Laser
Output wavelength	1480nm	650nm
Power output from patch lead	400mW	180μW (max)
Maximum pulse length	2.0ms	None
*Laser Safety Classification	Class 1	Class 1

* IEC 60825-1:2014, US 21CFR 1040.10

Objective Specifications

Magnification	40x	20x*
N.A.	0.49	0.25
Working distance	2.5mm	2.5mm
Parfocal distance	45mm (adaptor supplied for Niko	on CFI60 systems)

*Not cleared for use in USA market.

Electrical Specifications

Mains Adaptor for Control Unit and Motor Module

Input	100-240VAC, 50-60Hz, 0.8-0.4A
Output Power (maximum)	30W
Voltage	12VDC
Current (maximum)	2.50A
Earth Connection	Mandatory 3-pin plug for earthing (grounding)

Dimensions

Control unit	220mmx180mmx34mm (8.6"x7.1"x1.3")
Weight	1.2Kg

Operating Range

Temperature	10°C (50°F) to 42°C (108°F)
Humidity	15% to 85% RH (Non Condensing)

SECTION 5 - RI VIEWER

Introduction

RI Viewer is the software that interacts with the Saturn 5 Laser System for use within an ART laboratory. Connected to a camera attached to a microscope, it provides on screen images of samples under the microscope. It can record video and store still images from the microscope in a PC's file system. Supplied PCs are IEC 60950-1 approved.

The operator should be positioned in such a place to easily access the microscope and also view the image on the PC monitor.

RI Viewer software is provided in a CD format but can be downloaded from the RI website.

Once installed the RI Viewer application can be started by double clicking the RI Viewer icon on the desktop.

User Interface Icons

lcon	Meaning	lcon	Meaning
.0	Take Picture	*	Laser Control
°.	Take Video	\$	General Settings
	Stop Video Recording	Ø	Additional Camera Settings
	Open RI Viewer Gallery	++	Take Measurements
40x	Choose Objective Magnification	*****	Display Rulers Tool
- \$ +	Increase/Decrease Zoom Level	Ē	Instructions For Use

How to View Live Images

A camera will need to be connected to the PC running RI Viewer and the drivers installed correctly to view live images within RI Viewer. The dongle must also be fitted to a USB port.

RI Viewer software will automatically recognise both analogue and compatible digital camera devices connected to the PC. If there is only one camera device detected, it will show the live image for that device. If multiple camera devices are connected, it will use the camera that was last selected from the Video Source drop down box.

If there are multiple cameras attached to the PC, you may select the device you want the live image to be viewed from. To do this select the camera from the dropdown list on the Settings panel.

How to Zoom & Pan the Image

There are three ways to zoom into an area on the screen.

- 1. Place the mouse at a point on the screen and click and hold the right mouse button then release. This will zoom into the spot where the mouse is placed. To zoom out, click and hold the right mouse button.
- 2. Place the mouse at a point on the screen and use the scroll wheel on the mouse (if available). This will give the user control over how much digital zoom is given.
- 3. Using the tool bar at the bottom of the screen, click the + icon to zoom in incrementally. To zoom out by the same amount, click on the icon on the tool bar. The magnifying glass icon will zoom in and out by the preset zoom.

Whilst using digital zoom, a thumbnail image of the screen will appear in the top left of the screen. At the top of this panel is the amount of magnification you are using. When zoomed out fully, this panel will not appear on the screen.

Zooming in and zooming out can also be achieved using the foot pedal.

How to Set the Preset Zoom

- 1. Click the Additional Camera Settings Icon on the tool bar.
- 2. Drag the **Preset Zoom** slider to the required zoom.

How to Select Cameras

- 1. Click the **General Settings** Icon on the tool bar. The Video Source drop down box will have a list of camera names referring to the cameras connected to the PC.
- 2. Click on the **drop down box** to allow the selection of cameras. Clicking on the required camera in the list will change the live image to that of the selected camera.

Note: The list of available cameras is automatically populated to show the attached devices. Camera names in this list cannot be altered by the user.

Camera Flipping

- 1. Click the General Settings Icon on the tool bar.
- 2. Tick Flip Video Horizontal (for camera devices that support these options).
- 3. Tick Flip Video Vertical (for camera devices that support these options).

Camera flipping is for those microscope set ups where the camera may be required to be inverted. This is carried out during installation where a camera port selected for one requires camera flipping to show the image correctly on the screen. This will be carried out by a trained RI Service Engineer or company representative. When camera flipping is required it is recommended to carry out Laser Target Alignment as per instructions before carrying out any procedure.

Changing Camera Settings

Clicking the **Additional Camera Settings** icon on the tool bar will show a panel indicating the camera name and frames per second (fps). Clicking on **Additional Settings** will allow the user to adjust settings on the video source. Only settings available to the video source chosen will appear.

Objectives

Objectives can be changed on the microscope to enable the user to get a better field of view or better magnification. If you require accurate measurements of the image, the objective chosen in RI Viewer must be the same magnification as the objective chosen in the caddy.

How to Select Objectives

- 1. Click the Choose Objective Magnification Icon on the tool bar.
- 2. Click the required objective magnification.

How to Add Objectives

- 1. Click Display Rulers Tool Icon on the tool bar.
- 2. Click the Objective Calibration button.
- 3. Click **New Objective**. The magnification will be the same as the current magnification.
- 4. Click the required objective to edit Objective magnification and Fine Adjustment values.

How to Remove Objectives

- 1. Click **Display Rulers Tool** Icon on the tool bar.
- 2. Click the **Objective Calibration** button.
- 3. Click **X** next to the objective to be removed.

How to Check Objective Calibration

- 1. Click the **Display Rulers Tool** Icon on the tool bar.
- 2. Click the **Objective Calibration** button to open the Objective Calibration panel.

3. Place an object of known dimensions (a stage micrometer is supplied with each system for this purpose) in the field of view.

Ensure that the objective selected in RI Viewer matches that being used on the microscope.

- The stage micrometer supplied measures 100μm between the longer lines. For best accuracy, position each end point of the line at exactly the same relative position on the scale, for example at the right hand edge of each vertical line.
- 5. Drag the rulers to the point where the stage micrometer is going to be measured from and use the fine adjustment up and down until the ruler scale matches the stage micrometer.

How to Configure the Foot Pedal/Keyboard

- 1. Click the General Settings Icon on the tool bar.
- 2. From the Settings panel click the Keyboard/Foot Pedals Shortcuts.
- 3. Click the corresponding edit button to assign a shortcut.
- 4. Hold down the key or press the foot pedal to assign.
- 5. Click Save and Quit.

Once the shortcuts are set up, press the shortcut keys or the corresponding foot pedal to activate the command.

How to Perform Measurements

- 1. Click the Take Measurements Icon on the tool bar.
- 2. Click on the screen to select a start point for the measurement.
- 3. Click on the screen a second time to select an end point for the measurement.

The ends of the line can be dragged to change the measurement.

Lines can be removed by clicking the cross in the context window.

Lines are shown during laser operation but cannot be dragged or created and no measurements will be displayed.

Lines and measurements are shown on an image when images are taken in line mode or laser mode.

How to Take a Picture

- 1. Click the Take Picture Icon on the tool bar.
- 2. A camera icon will flash briefly in the centre of the screen to let the user know that an image has been taken.

Images can be stored in a .bmp file format or .jpeg file format. This is configurable from the settings menu by checking compress images.

Images are named by default (date and time) yyyymmddhhmmss.bmp. For example, a picture taken on the 3rd of January 2012 at 10:35:02 would be named 20120103103502.bmp.

How to Record Video

- 1. Click the Take Video Icon on the tool bar.
- 2. Whilst video is being captured, a recording notification will flash in the top left corner of the screen.
- 3. Click the **Stop Video Recording** Icon on the tool bar and the recording notification will stop.

Each video recording can last for a maximum of one hour. This eliminates the problem of accidentally leaving the software recording with the possibility of rendering the computer unusable.

4. When Freeze Frame is set as keyboard shortcut, the live image can be paused. A second press of the shortcut key will restart the live image.

Recorded videos are stored in a .wmv file format

Recorded videos are named by default (date and time) yyyymmddhhmmss.wmv. For example, a video taken on the 3rd of January 2012 at 10:35:02 would be named 20120103103502.wmv.

Section 5 RI Viewer ™

RI Viewer Gallery

The RI Viewer Gallery is used to review, store and add comments to images and videos taken using RI Viewer. The RI Viewer Gallery icon can be found on the tool bar.

When images and videos are taken with RI Viewer, they are saved to the pre-configured storage folder. This is configured from the Settings screen of RI Viewer. The RI Viewer Gallery shows all of the images and videos in this folder. It allows them to be reviewed and then printed, deleted or assigned to a patient. Once they have been assigned to a patient, they can also have references and comments added. These can then be printed alongside the images.

The **Gallery** icon **I** in RI Viewer is used to open RI Viewer Gallery. The first screen displayed is the Un-Assigned Images screen below.

To return to RI Viewer, close the Gallery using the cross in the top-right corner.

Research Instruments Ltd

Un-Assigned Images and Videos

The Un-Assigned Images and Videos screen shows all of the images and videos that are saved in the default folder as configured in RI Viewer.

- To select an image or video either right-click on it or hold the Ctrl key and left-click. The selected images are indicated by the coloured border.
- A single left-click will open the image or video in a full-screen view. See "9. Full Screen View" on page 2426.

		4		
Un-Assigned Ima	ages and Videos Se	lect Patient by ID:	-	_ 0 X
01/09/2014 11:04	01/09/2014 11:04	01/09/2014 11:04	01/09/2014 11:04	
		Ø	Q	
01/09/2014 11:04	01/09/2014 11:04	01/09/2014 11:04	01/09/2014 11:04	
Ő	10		-	
01/09/2014 11:04	18/07/2014 15:15	18/07/2014 15:15		
				~
🛅 Delete 🔲 Assi	gn 🛱 Copy 🖨 P	Print	×	Unselect
1 2	8 10		3	

Patient Details

The Patient Details screen shows the images that have been assigned to the selected patient along with the patient name, reference and comments that have been entered for each image.

The Delete, Print, Image Selection and Unselect functions all work in the same way.

RI Viewer Gallery Functions :

5		4	
- Selected Patie	ent: 13861	Select Patient by ID:	→ _ ¤ ×
	02/09/2014 09:46 Rebecca Fields Embryo 1	Unfertilised	
	02/09/2014 09:46 Rebecca Fields Sperm Sample 2	Washed	
n Dalata	Po Assign 🖌 Do	staile 🖾 Conv. 🗖 Drint	¥ Unsolast
	7	Copy Print 8 10	3

Section 5

RI Viewer ™

- 1. Delete
- 2. Assign
- 3. Unselect
- 4. Select Patient
- 5. Return to Unassigned Images and Videos or Patient Details
- 6. Re-Assign
- 7. Edit Details
- 8. Copy
- 9. Full Screen View
- **10. Print Preview (Images only)**

1. Delete <u></u> Delete

Delete is used to delete the selected images and videos. To delete an image or video, first select it, then press the delete icon. A confirmation screen will appear, allowing the user to confirm whether the images and videos listed should or should not be deleted.

OK

2. Assign Assign

Assign is used to assign the selected images and videos to a patient using a unique ID number. The image or video will be moved to the patient folder.

3. Unselect × Unselect

Unselect will de-select all of the images and videos that have been selected.

24

4. Select Patient Select Patient by ID:

Once images or videos have been assigned to a Patient ID, they are no longer shown on the Un-Assigned screen. To view the images and videos assigned to a patient click the **Select Patient** button to show the Select Patient box. Then enter the patient ID number into the box and click the arrow to go to the Patient Details screen for that patient. See "Patient Details" on page 2323.

Select Patient by I	D: 123 45	≯
`	12345	
18 20 B M.	12346	
the start	12347	
the said in a	12348	
a the states of	12349	
	12350	
02/09/2014 09:46	02/09/2014 09:46	

5. Return to Un-Assigned Images and Videos or Patient Details

To return to the Un-Assigned Images and Videos or Patient Details screen click

6. Re-Assign Re-Assign

If the Patient ID was assigned incorrectly click **Re-Assign**. A pop-up box will appear in which the correct patient details relating to the image or video can be input. Click **OK** to save.

Re-Assign to	a Different Patie	nt	
Patient ID	12347		
Patient Name	Katie Lemon		
		OK	Cancel

7. Edit Details 🖍 Details

Edit Details is used to enter a patient name, reference and a comment. These are saved with each image and are displayed on the Patient Details screen.

If a different patient name, reference or comment has been entered across a selection of images, the Edit Details screen will display (multiple values) for these fields. Changing this will alter the value for all of the selected images.

Edit Details	
Patient Name	Rebecca Fields
Reference	Embryo 1
Comment	Unfertilised
	OK Capcel

8. Сору 🔄 Сору

This copies the selected images and videos to the clipboard. These images can then be pasted to a new location such as a USB drive or into another application such as a word processor.

Section 5 RI Viewer ™

9. Full Screen View

A single left-click on an image or video will open it in a full-screen view. Delete, Assign, Re-Assign, Copy and Print can all be actioned from this view. To return to the Un-Assigned Images and Videos or Patient Details screen click

10. Print Preview

To preview the image before printing, first select the image. Then press **Print**. This will open the Print Preview Functions.

A. PrintB. Print Setting

A. Print

The **Print** button will print the selected images with the current settings. See "B. Print Settings" below.

B. Print Settings

Select the printer, paper size, page range, etc required for printing the selected images. Press **OK** to save the changes and return to Print Preview or **Cancel** to discard your changes.

Print Settings	×
Printer	Paper Size
Send To OneNote 2013	Letter (850 x 1100)
Microsoft XPS Document Writer	Letter Small (850 x 1100)
Fax CutePDF Writer	Tabloid (1100 x 1700) Ledger (1700 x 1100) Legal (850 x 1400) Statement (550 x 850) Executive (725 x 1050) A3 (1169 x 1654) A4 (827 x 1169)
Page Range From To 1 1 (1) (1) Page Orientation (C) (C) (C) (C) (C) (C) (C) (C)	Colour Settings
Image Details Show Page Numbers Date, Details and Comment • Yes No	
1	OK Cancel

Advice for Use

All images and videos should eventually be moved out of the Un-Assigned list so that it only contains newly captured images and videos. If there are any that you do not wish to delete permanently or assign to an existing patient, then a patient ID of 'miscellaneous' or similar can be created to assign them to.

Whenever one or more videos are selected, either in addition to a number of images or by themselves, the print command is unavailable.

SECTION 6 - SATURN 5 LASER SYSTEM INTENDED USES

Laser Assisted Hatching

The aim of Laser Assisted Hatching (LAH) is to locally weaken the zona pellucida. The specimen is viewed along the optical axis and the laser creates a trench in the zona pellucida which extends above and below the apparent hole.

Circle shows hole as viewed through microscope To minimise the risk of damage to blastomeres, users should administer as few laser pulses as possible at the shortest pulse lengths possible to achieve prescribed zona drilling or thinning effects.

The optimum diameter of the hole is determined by the thickness and/or hardness of the zona. Larger holes are necessary in thicker zona. Smaller holes are preferable for thin zona. The hole may fully breach the zona, whilst some users prefer to ablate only a fraction of the zona thickness, but across a wider area. This process is commonly referred to as zona thinning.

Only a single opening should be made in the zona pellucida. Multiple openings or those that are too small may prevent embryo hatching or lead to abnormal development.

The site chosen for the hole should be a section of the zona pellucida where the adjacent perivitelline space is widest or next to an area of fragmentation. This will minimise possible damage due to heating of adjacent blastomeres. The Exclusion Zone display can help with this.

To achieve a zona opening of $15\mu m$, select a pulse width which will result in a hole size of $9.3\mu m$ to $9.5\mu m$. A minimum of 4 shots should be applied to breach the inner and outer layers of the zona pellucida. Hole sizes of up to $10.5\mu m$ may be used without affecting blastocyst development rate.

Note: Assisted Hatching is not recommended for routine use in all ART patients.

Embryo Biopsy Procedure

The aim of embryo biopsy is to remove a part of the whole embryo which can then be analysed for chromosomal or genetic abnormalities.

The Saturn 5 Laser System is only to be used for the uses stated in the Indications for Use section of this manual.

WARNING - Repeated exposure to laser energy can cause the cells to harden making extraction of the biopsy cells more difficult to perform. A combination of laser shots, aspiration and gentle manipulation is recommended to separate the biopsy from the embryo.

Cleavage Stage Blastomere Biopsy

This biopsy is generally performed at the 6-8 cell stage of embryo development and typically 1 or 2 cells (blastomeres) are removed for analysis.

Research Instruments Ltd

A hole should be made around two thirds the size of the cell to be taken (see published papers for exact dimensions) and care should be taken to drill the zona pellucida where there are no cells close by.

Again, smaller holes will give less heat radiation, so as a guideline we recommend individual hole sizes of between 5-10 μ m in diameter. The laser pulse lengths required to make these hole sizes will vary a little from set-up to set-up, but will be anything in the range of between 15-1000 μ s (see Hole Size Selection, page 31).

For blastomere biopsy, the resultant hole made in the zona should be approximately 20µm and the opening should be made in between two blastomeres after the embryo is rotated and the cells selected for biopsy are positioned. A hole size setting of 9-10µm should be selected and 4-6 shots are usually sufficient to make an opening of around 20µm.

Firing the laser to make an opening in between two cells means the cells will have less contact with the heat generated, therefore there will be a reduction in the chance of cell lysis and other cells around this vicinity (above or below) being affected. The embryo should be held at the bottom of the dish when the laser shots are being applied to maximise laser efficiency.

Trophectoderm/Blastocyst Biopsy

The aim of this biopsy is to take 5-10 trophectoderm (TE) cells from the embryo at blastocyst stage, without causing damage to the inner cell mass (ICM). Laser assisted hatching (LAH) is performed on day 3 or early day 5 to create a weak point in the zona pellucida through which the trophectoderm cells can start to herniate.

If creating a hole on day 3, the hole size created should be 15μ m as described for Assisted Hatching. At day 5/6 of embryo development there should be sufficient compaction of the ICM creating herniation of the TE. If the herniated cells are safely away from the ICM, TE cells can be aspirated with a biopsy pipette (20-30 μ m ID).

If creating a hole on day 5/6, an opening of approximately 15-20µm is adequate. In this instance the opening should be made on the side opposite to the ICM whilst the blastocyst is being held by a holding pipette and often an immediate collapse of the blastocoelic cavity will result. The biopsy pipette should be projected towards the collapsed trophectoderm and a few TE cells aspirated and pulled towards the opening of the zona. To dissociate the TE cells from the remaining embryo, suction from the biopsy pipette to the TE cells and from the holding pipette to the embryo should continue to be gently and firmly applied to allow the laser pulses to effectively penetrate and puncture the extended TE layer. Laser pulses of 0.4-0.8ms can be applied with a maximum of 4 shots at a time to sever the TE cells. This series of shots can be repeated if needed.

A maximum of 5-10 cells should be aspirated when performing Trophectoderm (TE) biopsy.

Blastocyst Collapse

Blastocyst collapse is a procedure to remove the blastocoelic fluid of the embryo prior to vitrification to inhibit ice crystal formation in the cell during the freezing process. The procedure is similar to that performed for trophectoderm biopsy at day 5/6, ie it should be performed on expanded blastocysts and an opening of approximately 15-20 μ m is adequate. The laser should be fired at the junction between two trophectoderm cells and should be made on the side opposite to the inner cell mass (ICM). An immediate collapse of the blastocoelic cavity will result.

SECTION 7 - LASER ABLATION PROCEDURE

1. Select the red laser objective on the microscope and check the objective calibration settings.

WARNING - The embryo may be damaged if objectives other than the red Saturn 5 Laser System objective is used.

- 2. Check the Laser Target Alignment before each procedure.
- 3. Check the temperature of the specimen (37°C).
- 4. Focus at the mid-plane of the embryo.
- 5. Position the embryo against the surface of the Petri dish using a micromanipulator and holding pipette to minimise embryo movement.
- 6. Choose a suitable location for the laser shot.
- 7. The first attempt to make a hole in the zona pellucida should be made with a short pulse. If the hole is too small, then use progressively longer pulses until the desired hole size is achieved.

Research Instruments Ltd

31

Hole Size Selection

For safe and effective treatment, we recommend that pulses used are in the range 15 to 1000µs.

Pulses that are very short may be ineffective and pulses that are too long may damage the embryo. For this reason, a warning will appear on the **Fire** button when pulse width is 15μ s or below and when the pulse width is greater or equal to 1000μ s.

When the warnings are shown, the laser can still be fired, but an initial click on the **Fire** button is required to acknowledge the warning. If the pulse width is still in the warning range, then the button will go back to the warning state after the laser has fired.

Ablation Procedure

Focus on the surface of an empty Petri dish and ensure that the target is correctly aligned to the pilot laser spot. Place the dish with the specimen on the microscope stage and hold the specimen on the bottom of the dish with a holding pipette. Check you are using the red Saturn 5 Laser System objective. To ablate the zona, the focal plane must be at the mid section of the embryo. Refocus the microscope until the image of the zona is sharp.

Side view showing embryo on dish su	Focus here to ablate
Correct 🗸	Incorrect X
	Correct focus - specimen is sharply focussed.
30+	Incorrect focus for drilling.

Using a Saturn 5 Fixed Laser System, move the specimen into the field of view. Select a short pulse length using the RI Viewer controls. The different settings do not vary the power of the laser; they control the length of time that the laser is fired. If using a Saturn 5 Active Laser System move the target reticule on the screen by clicking the position required with the mouse button.

Click on the zona pellucida where you want the hole to appear. Fire the laser by clicking the **Fire** button in RI Viewer. A small hole should appear in the zona. If a larger hole is required, increase the laser pulse time and fire again.

To create larger holes and for zona thinning the area should be ablated using a series of small diameter holes that overlap slightly, joining to form one larger hole or channel.

Do not attempt to make a large hole with just one shot of the laser. Although this will not cause damage to the instruments, it could potentially damage the embryo due to the greater heating effect of the long pulse length.

For further information on the methodology of laser ablation, refer to the many published scientific papers on the subject, or seek advice from a practitioner who is experienced in the technique.

SECTION 8 - LASER OPERATION

How to Start Up

There is no power button for the Saturn 5. Once the device has been plugged into the power outlet and the power outlet is switched on then the device is active and can be used.

- 1. Plug the device into the power outlet.
- 2. Ensure outlet is switched on.

How to Configure the Laser for a New Procedure

- 1. Check objective calibration, see page 20.
- 2. Check laser target alignment, see below.
- 3. Check hole size calibration, see page 34.

How to Check Laser Target Alignment for Saturn 5 Active Laser System

If the laser has not been aligned before then when you start RI Viewer the alignment procedure will start automatically.

Laser alignment of the Saturn 5 Active Laser System can be checked by following these steps.

- 1. Click the Laser Control icon.
- 2. Click Laser Settings.
- 3. Click Align Laser.
- 4. Ensure embryos have been removed from the field of view.
- 5. Using an empty Petri dish or a slide adjust the focus of the pilot laser to ensure the pilot laser spot is as small as possible. The brightness of the pilot laser can be adjusted.
- 6. Click Align Laser.
- 7. The motor will carry out a 7 point alignment at various points on the screen. After each motor position click the screen to target the centre of the pilot laser.
- 8. Click Next to proceed to the next alignment point.
- 9. When the final alignment point is finished, click **Complete** to save the alignment.

How to Check Laser Target Alignment for Saturn 5 Fixed Laser System

- 1. Click the Laser Control icon.
- 2. Click Laser Settings.
- 3. Click Align Laser.
- 4. Ensure embryos have been removed from the field of view.
- 5. Using an empty Petri dish or a slide adjust the focus of the pilot laser to ensure the pilot laser spot is as small as possible. The brightness of the pilot laser can be adjusted.
- 6. Click the centre of the pilot laser.
- 7. Click Finish.

ŏ

How to Check Hole Size Calibration

The laser objective must be calibrated correctly for the Hole Size Indicator to work correctly.

The actual size of hole a laser produces may vary depending on the type of Petri dish and media, the characteristics of the embryo and other factors. For this reason, the Hole Size Indicator may be calibrated.

To calibrate the Hole Size Indicator, you must be using the red laser objective and select the 40X objective in RI Viewer. A suitable test specimen (which will be drilled) should be in the laser target area.

1. Click the Laser Settings button on the Laser Control panel.

- 2. Click the Hole Size Calibration button.
- 3. Put the laser target on top of the specimen.
- 4. Fire the laser and ablate an area of the sample specimen.
- 5. Click the up and down arrows next to Adjust Hole Size to match to the size of the drilled hole.
- 6. Click the Save Point button when you are happy that the sizes match.
- 7. Repeat for a number of pulse widths to create a curve on the graph

Repeated hole size calibration can sometimes introduce incorrect points on the graph. The graph should normally be a straight line or smooth curve with a positive (increasing) gradient. If a point leads to a negative gradient then a warning will be displayed on the chart. This should be corrected as it will imply two different pulse lengths for a given hole size, and may lead to unexpected hole sizes.

How to Remove a Point from the Hole Size Calibration Graph

- 1. Click the point you wish to remove.
- 2. Click the Remove button.
- The warning will disappear as soon as the negative gradient has been resolved.

Research Instruments Ltd

Laser Target

RI Viewer displays a laser target on the image. This indicates where the laser beam is focused, and thus where the hole will appear.

Note: To use the laser system, the specimen must be viewed with the red laser objective.

The target will only be shown when the system is in laser mode.

The appearance and size of the laser target can be modified. The Target Appearance Setting is displayed in the Laser Settings panel. You can change its appearance by adjusting the sliders. This is also where the size of the laser Exclusion Zone can be set.

Hole Size Indicator

The circle that is displayed indicates the estimated size of the hole that will be created when the laser is fired. Actual hole sizes may vary due to natural differences between specimens.

The Hole Size Indicator can be turned on or off from the Target Appearance panel on the Laser Settings panel.

Exclusion Zone

The laser generates heat which has the potential to damage critical cells. The Exclusion Zone provides a measuring tool to show whether critical cells are close to the laser ablation area and therefore may be affected by the heat. The target point should be as far away from these critical cells as is possible to avoid unnecessary damage and it is ultimately the responsibility of the user to define a safe distance. The default exclusion zone setting is 5μ m. This can be adjusted via the Target Appearance panel using the slider or input box.

How to Adjust Hole Size/Pulse Width

- 1. Hold the left mouse button down and drag until the desired size is reached.
- 2. Click and drag the slider on the Laser Control panel.
- 3. Fine adjustment can be made using the up down keys.

Preset Pulse Lengths

Preset pulse lengths are 0.350ms, 0.400ms and 0.450ms and these preset values can be changed using RI Viewer.

Laser Control X
Pulse Width / Hole Size
- 0.400ms 11.3um
Preset - 1 + Save
FIRE

Choose the preset by clicking the + or - buttons. To change a preset, select the preset, set the desired value using the slider, and click the **Save** button.

Hole sizes can also be chosen by clicking on the screen and dragging a hole of the size you need. The pulse width will be calculated automatically to create the size of hole required.

How to Fire the Laser (Single Pulse)

Find the sample under the microscope using an objective with wide field of view (eg 4x objective).

- 1. Hold the sample with a holding pipette at the bottom of the dish.
- 2. Switch to the laser objective and focus on the sample.
- 3. Click the Laser Control Icon on the tool bar.
- 4.a Fixed System position the sample such that the desired hole location is under the target.
- 4.b Active System position the sample in the field of view. Click on the desired position of the hole.
- 5. Click the **Fire** button. The control unit will beep to confirm that the laser has fired.

In some installations, the field of view is larger than the range of movement of the laser. If the cursor is moved to a position on the screen where the laser cannot reach, the unreachable area will be highlighted. The target cannot be placed in this area.

Biopsy Mode

Biopsy Mode is available with the Saturn 5 Active Laser System only and can be used for assisted hatching and embryo biopsy procedures. It allows the user to deliver a series of 4-6 shots along a predetermined line automatically and has no behavioral differences to a succession of single shots ie it is as safe as single shot mode. This predetermined line can be straight or curved.

When using this mode care must be taken

- not to draw a line where you do not want a hole to be drilled
- not to move the sample while firing the laser
- to check the laser settings and alignment prior to firing
- to fire in between two cells so that the cells are less in contact with the laser heat generated and to reduce the chance of cell lysis and other cells around this vicinity (above or below) being also affected by the heat.

How to Enable Biopsy Mode

- 1. Click the General Settings icon on the tool bar.
- 2. Tick Enable Biopsy Mode. This option is available only with Saturn 5 Active Laser System).

How to Fire the Laser (Biopsy Mode)

- 1. Switch to the laser objective.
- 2. Focus on the sample.
- 3. Click the Laser Control Icon on the tool bar.
- 4. Check the sample is just on the bottom of the dish.
- 5. From the Laser Control Panel, click **Biopsy**. You will be taken to the Laser Biopsy panel.
- 6. Click where you want the first hole to be. The line will follow your cursor.
- 7. Click where you want the last hole to be. The holes to be drilled are overlaid on the image.
- 8. The size and number of holes can be changed by moving the two sliders on the panel.
- 9. The line can be lengthened or shortened by dragging the line end.
- 10. A point in the middle of the line can be dragged to create a curved line.
- 11. Press Start Firing to begin the firing procedure. The laser will then drill each hole in sequence.

If Biopsy Mode needs to be stopped at any stage press Stop.

How to Shut Down

- 1. Close RI Viewer software.
- 2. Unplug the device from the power outlet.

SECTION 9 - TROUBLESHOOTING FOR SATURN 5 LASER SYSTEM

Problem	Possible Cause	Solution
No lights on control unit	No power input	Check the power supply is plugged in to the mains and switched on
	Incorrect power supply	Use only the power supply provided
No video image	Camera not connected	Make sure camera is connected to PC and to power supply if appropriate
	Incorrect camera settings	Check brightness/contrast settings (section How to view live image)
	Camera port not selected	Select camera port
Laser having no effect	Wrong objective used	Only use the red Saturn 5 Laser System objective
	Target misaligned	Check alignment
	Port selector misaligned	Check port selector is in correct position*
	Dirt on fibre optic	Service required
	Embryo above dish surface	Check the embryo is touching the dish surface
	Dirt on fibre optic	Service required
Hole size smaller than expected	Kinked fibre optic	Straighten fibre optic patch lead - minimum bend radius 50mm
	Embryo too cold	Check temperature should be 37°C
	Dirt/oil on objective	Clean objective
Hole size larger than expected	Excessive pulse length	Choose smaller hole size
	Hole Size Indicator not calibrated	Check calibration. Check for negative gradient
Laser position inaccurate	Port selector misaligned	Check port selector is in correct position*
	Calibration not done	Calibrate each time unit is switched on

*Some port selectors do not return to exactly the same position when moved. Check the target alignment each time the port selector is moved.

SECTION 10 - CARE AND MAINTENANCE

Cleaning

We recommend that a non PVC dust cover is placed over the microscope when not in use. Plasticisers commonly used in PVC are toxic to embryos.

The control unit case should be cleaned with a cloth moistened with isopropyl alcohol only. If any liquids are spilt over the control unit switch off immediately and remove the power connector. Clean the spill and ensure that the unit is completely dry before switching on. If it is suspected that any liquids have gone inside the case contact RI for advice before switching on.

Routine maintenance simply involves ensuring that all optical components are kept clean. The lens on the end of the Saturn 5 Laser System objective should be cleaned occasionally by wiping gently with a dry lens cloth.

Every six months the collimator module should be removed and the dichroic mirror cleaned with a dry lens cloth. This should be done by RI or an appointed representative as the laser alignment must be checked and readjusted after removing the collimator module.

For further advice on microscope cleaning, please contact RI or your microscope supplier.

Servicing

We recommend that the system undergoes a routine service at least every twelve months. This can normally be carried out by your distributor.

Regular servicing by an RI authorised technician will help to ensure that your system performs at its best. We recommend a minimum of one annual inspection and service. However, this may need to be more frequent if systems are heavily used. Contact your distributor or RI's service team directly (see page 4040) to arrange servicing. Where necessary, RI will provide all technical information required to assist in resolving problems.

For all maintenance requirements, contact your distributor or RI's service team directly.

In the event that you have a problem with RI instruments, first look at the Troubleshooting section. If you require any further help, contact your distributor or RI's service team direct. We will try to resolve the problem as quickly as possible.

No user serviceable parts.

Disposal of Goods

If any electronic component is no longer serviceable, it must be sent back to RI to be destroyed in an environmentally safe way. Do not dispose of with 'normal' waste.

SECTION 11 - REPAIRS AND RETURNS PROCEDURES

RI Repairs System

In the event that you have a problem with a RI instrument, please follow the procedure below to ensure prompt attention.

- 1. Read the 'Troubleshooting' section.
- 2. If you require any further help contact your distributor or RI directly. RI will try to resolve the problem as quickly as possible.

RI Returns System

- 1. Contact RI to obtain a Returned Materials Authorisation (RMA) number. **Note:** Goods will not be replaced or refunded without prior agreement and clearly stating the RMA number.
- 2. Pack the item carefully in its original packaging. RI will not accept responsibility for damage due to incorrect packaging. Replacement items or additional repairs will be invoiced.
- 3. Clearly label the package with the RMA number, mark the package "Urgent Returned Items For Repair", and ship to the address below. Goods should be insured for their full value during shipping.

Contact Details

Research Instruments Ltd, Bickland Industrial Park, Falmouth, Cornwall, TR11 4TA, UK Tel: +44 (0) 1326 372 753 Fax: +44 (0) 1326 378 783 E-mail: service@research-instruments.com Website: www.research-instruments.com

Obligation to Inform

In compliance with the European Medical Device Directive 93/42/EEC as amended, it is your duty to inform RI and your competent authority if you believe this device has, or may have, caused or contributed to the death of a patient or user or to a serious deterioration in their state of health.

Feedback

Thank you for purchasing an RI product. To help RI develop the best tools for ART, we rely on customer feedback. If you have any suggestions for how we can improve our products or the information we provide with them, please send them to <u>feedback@research-instruments.com</u>. Your feedback will help us develop the product and supporting materials to meet your future needs.

Thank you.

___| |

____|

___| |

____|